
Application of Bounded Linear Stability AnalysisMethod for Metrics-Driven Adaptive ControlMaryam Bakhtiari-Nejad∗Nhan T. Nguyen†Kalmanje Krishnakumar‡NASA Ames Research Center, Mo�ett Field, CA 94035This paper presents the application of Bounded Linear Stability Analysis (BLSA) methodfor metrics-driven adaptive control. The bounded linear stability analysis method is usedfor analyzing stability of adaptive control models, without linearizing the adaptive laws.Metrics-driven adaptive control introduces a notion that adaptation should be driven bysome stability metrics to achieve robustness. By the application of bounded linear stabilityanalysis method the adaptive gain is adjusted during the adaptation in order to meet cer-tain phase margin requirements. Analysis of metrics-driven adaptive control is evaluatedfor a 2
nd order system that represents a pitch attitude control of a generic transport air-craft. The analysis shows that the system with the metrics-conforming variable adaptivegain becomes more robust to unmodeled dynamics or time delay. The e�ect of analysistime-window for BLSA is also evaluated in order to meet the stability margin criteria.I. IntroductionAdaptive control laws are generally nonlinear and therefore stability robustness of adaptive control cannotbe analyzed by linear stability metrics in terms of phase and gain margins. These margins are designed intolinear control laws to provide robustness to account for system uncertainties such as modeling errors andexogenous disturbances. The lack of stability metrics for adaptive control is a major challenge to enableadaptive control laws to be adopted in production control systems. Metrics-driven adaptive control introducesa notion that adaptation should be driven by some stability metrics to achieve robustness.1 The boundedlinear stability analysis method is applied in order to analyze adaptive control in terms of the linear stabilityconcept by establishing an approximate linear equivalent system as a function of a mean square value of tehinput fucntion to the adaptive law.2 The method uses an error bound analysis to extract the dominant linearcomponents of the nonlinear adaptive laws without linearization. The idea is to seek a linear representationthat bounds a nonlinear adaptive law. This method can provide an understanding of the stability marginof nonlinear adaptive control that can be used to establish limits on adaptive gains during adaptation toensure system robustness, and thus the adaptation is made to be metrics-driven.II. Adaptive Control of a Second-Order SystemFigure 1 shows the model-reference adaptive control (MRAC) architecture for a pitch attitude control ofa generic transport model (GTM) of a 2ndorder system of aircraft. The plant model is given as

ẋ = Ax + Bu (1)where x =

[

θ

θ̇

] is the state vector, θ and θ̇ are pitch angle and pitch rate respectively, A =

[

0 1

−Mqα̇ Mα

]
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is assumed to be unknown, and B =

[

0

Mδe

] is known.According to R.C. Nelson,3 Mqα̇ = Mq + Mα̇ =
(
Cmq

+ Cmα̇

)
c̄

2u0

QSc̄
Iy

, and Mδe
= Cδe

QSc̄
Iy

, where Cmq
,

Cmα̇
, and Cδe

are the pitching moment derivatives, c̄ is the mean aerodynamic chord, S is the wing area, u0is the aircraft velocity along the x body axis, , and Iy is the mass moment, and Q = 1

2
ρu2

0, where ρis the airdensity.The output of the dynamic inversion u is de�ned as
u =

(
bT Bn

)−1 (
bT ẋm − bT Anx − uad + upd

) (2)where b =

[

0

1

], Bn =

[

0

Mδen

] and An =

[

0 0

−Mqnα̇n
−Mαn

] contain the nominal parameters forthe dynamic inversion, ẋm is a model-reference acceleration, uad is the adaptive control signal, and upd is aproportional-derivative (PD) controller.
Fig.1 MRAC Architecture for Pitch Model of Aircraft.The PD controller upd is de�ned as

upd = ke (3)where k =
[

kp kd

] is a gain vector with kp and kd being the proportional and derivative gainsrespectively, and e = xm − x is the tracking error.The adaptive signal Uad is parametrized by a linear-in-parameters matched uncertainty
uad = W>x (4)where W is a weight matrix and x is the basis function, which in the case of this example is the same asthe state vector.The adaptive law given below can be shown to be stable based on the Lyapunov stability proof.2

Ẇ = −Γxe>Pb (5)where Γ > 0 is an adaptive gain, and P solves the Lyapunov equation as follows
PAc + AT

c P = −Qwhere Ac =

[

0 1

−kp −kd

]is Hurwitz, and Q = I > 0 is a symmetric positive-de�nite matrix.Figure 2 shows the tracking performance of the adaptive control system. In order to simulate an un-certainty, a 30% reduction in the pitch damping is imposed. A constant adaptive gain of Γ = 100 is used.Figure 2 shows that the tracking performance of the adaptive system with the parameteric failure is perfectlyacheived.
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Fig.2 Tracking Performance with Reduced Pitch Damping.III. Bounded Linear Stability Analysis (BLSA)Stability of nonlinear adaptive control is usually analyzed by the Lyapunov method. The traditionallinear stability margin, phase margin and gain margin concept, may be extended to nonlinear adaptivecontrol if it could be represented by some linear approximations.The bounded linear stability analysis seeksa piecewise linear equivalent approximation of nonlinear adaptive control in terms of a mean square valueof the input function to the adaptive law over a short time window during which the linear time invariant(LTI) concept of stability margins could be analyzed to provide a method for adjusting the adaptive gainfor the next time window.The stability of the adaptive law can be analyzed by a conservatively bounded linear stability using alinear equivalent adaptive law2 as follows.Let W ∗be the constant ideal weight and W̃ = W − W ∗be the weight variation, therefore
d

dt

(

W̃>x
)

≤ −Γα0b
>Pe + ∆1 (6)where ∆1 > 0 is a constant that represents a bound, and α0 > 0 is a mean square value of the inputfunction to the adaptive law such that

α0 ≤
1

T

ˆ t+T

t

x>x dτ ≈
1

n

n−1∑

k=0

xT x (t + kT ) (7)where T = n∆t is the analysis time window and n is the number of time steps ∆t.Since uad =
(

W ∗ + W̃
)T

x, then the linear bound to the adaptive law (Eq.5) is rewritten as
d

dt
(uad) = −Γα0b

>Pe + ∆1or
uad(s) = −Γα0

P22s + P12

s
Θe(s) + ∆2where in the Laplas transform Θe(s) = Θc(s)−Θ(s) is the error, Θc(s) is the command, and ∆2 is a constantbound .Using the bounded linear stability analysis approach the open-loop transfer function between the output

Θ(s) and the error Θe(s) could easily be derived as shown below. In deriving the open-loop transfer function,the parametric uncertainty in the pitch damping ξ is included.3 of 11American Institute of Aeronautics and Astronautics



Substituting Eq. into Eq.2 and then into Eq.1 and taking the Laplace transform results in
sX = (A − An)X + Γα0

[

0

1

]

×
P22s + P12

s
Θe(s)

︸ ︷︷ ︸

uad

+

[

0

1

]

×
[

kp kd

]
[

Θe

sΘe

]

︸ ︷︷ ︸

upd

+ sxm + ∆2
︸ ︷︷ ︸

∆3

(8)Substituting for X(s) =

[

Θ(s)

sΘ(s)

], Eq.8 becomes
s2Θ(s) = − (Mqα̇ − Mqnα̇n

+ W2(t)) sΘ(s)− (W1(t)) Θ(s)+Γα0

(
P12

s
+ P22

)

Θe(s)+ (kp + kds)Θe(s)+∆3(9)whereW1(t), W2(t) are the adaptive weights, and ξ contains the failure that would eventually be correctedby the adaptive weight W2(t).The system open-loop transfer function is thus obtained as
G(s) =

Θ

Θe

(s) =
kds

2 + (kp + Γα0P22) s + Γα0P12

s3 + (Mqα̇ − Mqnα̇n
+ W2(t)) s2 + (W1(t)) s

(10)If the adaptation is such that it results in a perfect model matching condition so that W2(t) = Mqα̇ −
Mqnα̇n

, then the open-loop transfer function in Eq. (10) becomes an ideal transfer function:
G∗(s) =

kds
2 + (kp + Γα0P22) s + Γα0P12

s3
(11)We note that both transfer functions are functions of the Γ and α0. The third possible open-loop transferfunction is obtained when the adaptive weights reach their steady state values, assuming that the adaptationconverges. Then the transfer function with constant weights is obtained as:

G(s) =
kds + kp

s2 + (2ξωn − 2ξnωnn
+ W2) s + W1

(12)The frequency response of the three open-loop transfer functions (Eq. 10,11,12) is shown in �gure 3.The adaptive weights in the transfer functions of equations 10 and 12 are chosen after the adaptation isconverged. Adaptive control system with constant adaptive gain Γ = 100 is shown later to only tolerate lessthan 0.1sec of time delay and have a phase margin as low as 5deg. Figure 3 indicates that the open-looptransfer function with constant weights G(s) provides a non-practical prediction for phase margin and timedelay margin. Therefore G(s) should not be used for the purpose of metrics-driven adaptive control analysis.On the other hand, both the open loop transfer function G(s) and the ideal transfer function G∗(s) providevery close frequency responses, and both predict very small phase margin of about 4 deg corresponding to
0.01 sec time delay margin.
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Fig3. Frequency Response Comparison at the end of Adaptation.Although the adaptive law provides a viable tracking performance for a system with parametric un-certainty as shown in �gure 2, the system is not su�ciently robust to other types of uncertainty such asunmodeled dynamics or time delay due to the very low predicted stability margins. By adjusting the adap-tive gain in order to achieve certain criteria for phase margin, adaptation is made to be metrics-driven. Since
G(s) contains the unknown parameter �Mqα̇ −Mqnα̇n

+ W2(t)� due to the parametric failure, G∗(s) is mostsuited for adjusting the adaptive gain and the process is explained in more details in the next section.IV. Metrics-Driven Adaptive ControlThe ideal transfer function (Eq.11) contains all known parameters and therefore it could be used in orderto adjust the adaptive gain Γ during the adaptation in order to meet certain phase margin requirements.The frequency response of the ideal transfer function (Eq.11) is used to de�ne the phase margin φmand thecorresponding gain corssover frequency ωg.By de�nition, the phase margin is described as:5
φm = arg [G∗(jωg)] + Πor

φm = arctan

(
(kp + Γα0P22)ωg

Γα0P12 − kdω2
g

)

− π/2 (13)and the corresponding gain-crossover frequency ωg is de�ned by the following expression:5
|G∗(jωg)| = 1or

√
√
√
√

(
Γα0P12 − kdω2

g

)2
+ (kp + Γα0P22)

2
ω2

g

ω4
g + ω6

g

= 1 (14)The α0 pareameter is computed according to Eq.7 within a given time window T . Using this value and adesired phase-margin φm, equations 13 and 14 are solved together using a nonlinear root search to calculate
ωg and the appropriate adaptive gain Γ. The calculated Γ is then used for adaptation for the next timewindow. With the purpose of reaching a desired phase-margin φm, this process is repeated for each timewindow until Γ should reach a steady state value. Therefore, the adjusted adaptive gain Γ(t) instead of theconstant gain Γ is used in the adaptive control. The analysis result is illustrated in the simulation section.However, analysis of the convergence of the system of nonlinear equations (13 and 14) shows that asolution for Γ and ωg always exist for the selection of the given phase margins of φm ≤ 65 deg, and therewould be no solution for Γ or ωg with the phase margins of φm > 65deg. This fact is shown in �gure 4,which demonstrates that only the graphs for the range of phase margins of φm = 10 − 65 deg intersect withthe graph for the corresponding gain crossover frequency ωg and no solution is obtained out of this range.This analysis in �gure 4 is shown for α0 = 1, while same result is obtained for di�retent values of α0.
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Fig. 4 Limit on the Desired φm Criteria for the Metrics-Driven Adaptive Control.V. SimulationIn order to illustrate the metrics-driven adaptive control with the BLSA method a simulation is performedfor a 2nd order pitch attitude control for a generic transport model of aircraft at mach M = 0.6 and altitude
h = 20, 000 ft. As mentioned in the previous section, the phase margin conforming adjusted adaptive gain Γis obtained from the analysis of the ideal open-loop transfer function (Eq.11) with the purpose of achievinga desired phase margin φm = 45 deg. The adjusted adaptive gain Γ instead of the constant gain is then usedin the adaptive control. Figure 5 shows α0 that is obtained over the time-window of T = 1.5sec, and alsothe adjusted adaptive gain Γ with the starting value of Γ = 100, and the steady state value of Γ = 1.33.
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Fig5. α0 Parameter and Phase Margin Conforming Variable Adaptive Gain Γ.Figure 6 shows the e�ect of the adjusted adaptive gain Γ versus the constant adaptive gain Γ = 100 onthe stability margin analysis. The phase margin φm and time-delay margin TDm prediction by BLSA are6 of 11American Institute of Aeronautics and Astronautics



calculated from the open-loop transfer function G(s) (Eq.10). The calculated phase margin φm with thevariable Γ is shown to reach the desired criteria φm = 45deg. Also time-delay margin TDm is shown to bemuch higher with the varying adaptive gain Γ, which indicates that the adaptive system with the adjusted
Γ should be able to tolerate much more uncertainty in the system.In order to analyze the e�ectiveness of the metrics-driven adaptive control, system with added uncertaintyis evaluated as time delay is introduced in the simulink model right after the control law and before the plant.In �gure 7 the left plot shows that the adjusted Γ as compared to the constact Γ does increase the time-delaymargin of the system up to 15 times. The right plot shows the result of the calculation of time-delay marginby BLSA method with the adjusted and �xed Γ, and the analysis shows that BLSA provides a conservativeyet practical prediction of time-delay margin with respect to the actual tolerated time-delay of the system.
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Fig 6. Stability Margin Comparison with the Adjusted and Constant Adaptive Gain Γ.
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Fig 7. Analysis of Time Delay Margin Prediction with BLSA, and Max. Added Uncertainty to the System.Simulation of the system with the adjusted adaptive gain Γ as shown in �gure 7, indicates that systemcan tolerate as much as 1.48 sec of time delay that is added after the control law. However, with the constantadaptive gain Γ = 100, system can only tolerate up to 0.07 sec of added time delay. Figure 8 illustrates thetracking performance with the introduced maximum time delay.7 of 11American Institute of Aeronautics and Astronautics
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Fig 9. Performance of the Adaptive Weights with Adjusted and Fixed Γ.Now, the choice of time-window T is evaluated, over which the α0 parameter is obtained and the analysisis performed. The size of the analysis time-window T has a direct a�ect on how frequent adaptive gain Γis adjusted. As illustrated in �gure 10, the choice of a very small time-window like T = 0.1sec causes theadaptive gain Γ to be changed very frequently. The very fast changes in the adaptive gain Γ cause a poorconvergence of the parameters since the adaptive law will not have enough time for learning. However, theanalysis with a large time-window T is impractical and does not capture the transient. Therefore, a trade-o�should be made in choosing the proper analysis time-window T .8 of 11American Institute of Aeronautics and Astronautics
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Fig10. E�ect of the Analysis Time-Window T on the Adjusted Adaptive Gain Γ.As explained before, the ideal open loop transfer function (Eq. 11) that is obtained as a result of perfectparameter estimation is used to calculate the varying adaptive gain Γ in order to acheive a certain phasemargin φm criteria. The adjusted adaptive gain Γ is used in the adaptive control, and the true o�-nominalopen loop transfer function (Eq. 10) is used to examine the stability margins. Based on the choice of thetime-window T , if the adjusted adaptive gain Γ does not cause perfect parameters convergence then thebehavior of the system is a�ected and the desired phase margin is not reached. Figure 11 illustrates thee�ect of time-window T on the parametric failure related index in the denominator of the true o�-nominalopen loop transfer function , Mqα̇ − Mqnα̇n
+ W2(t), which is supposed to reach zero after the adaptiveparameters are convergenced. The analysis with di�erent time-windows T shows that the best parameterconvergence is obtained with T = 1.5sec.
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Fig11. E�ect of the Analysis Time-Window T on Parameter Convergence.Figure 12 illustrates the e�ect of time-window T on the analysis of stability margins, where the desiredphase margin φm is completely achieved with T = 1.5sec, and since the much smaller time-window of
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Fig12. E�ect of the Analysis Time-Window T on Achieving the Desired Phase Margin.Figure 12 demonstrates a similar analysis as shown in �gure 7, but with di�erent time-windows T =
0.1, 1 sec. The left plot illustrates that the max time-delay system can take is about %25 larger with
T = 1 sec as compared to T = 0.1 sec. Also, the right plot shows that the time-delay margin calculated byBLSA is almost %7 higher with T = 1 sec.
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T=1 sec T=1 secFig.13 - Time-Delay Margin Analsys with Two Di�erent Time-WindowsT = 0.1, 1 sec.VI. DiscussionBy using the Bounded Linear Stability Analysis (BLSA) concept, a metrics-driven learning paradigm foradaptive control system is proposed. With BLSA method a piecewise linear upper bound for the adaptivelaw is formed, with which the true and ideal open-loop transfer functions are formed. With the goal ofachieving certain phase margin φm criteria, the ideal transfer function is used in order to adjust the adaptivegain Γ during adaptation. As demonstrated in �gure ........, the analysis indicates that the adaptive gain Γcan always be adjusted for a speci�c desired phase margin on the range of φm ≤ 65 deg.By using the adjusted adaptive gain Γ during adaptation, the stability margin analysis is performedfor the true open loop transfer function (Eq.......... ). The analysis shows that the desired phase margin
φm = 45 deg and a much higher time-delay margin TDm = 0.48 sec is acheived, �gure......... . While byusing a �xed adaptive gain Γ = 100, a phase margin and time-delay margin as low as φm = 4.9 deg and10 of 11American Institute of Aeronautics and Astronautics



TDm = 0.01 sec is obtained respectively. Furthermore, by adding a time-delay in the simulink model betweenthe control law and plant, system with the phase margin conforming adjusted adaptive gain Γ is shown totake as much as 1.48 sec time-dalay and still remain stable. While system with the �xed adaptive gain
Γ = 100 only takes as much as 0.07 sec time-delay. Therefore, system with the metrics-conforming variableadaptive gain Γ becomes up to 20 times more robust to unmodeled dynamics or time delay.The e�ect of the size of analysis time-window indicates that a trade-o� should me made between alarge time-window that does not properly capture transients and a small time-window that causes poorconvergence of the adaptive parameters, �gure..... .The analysis presented in this paper VII. ConclusionThe application of bounded linear stability analysis on adaptive systems is evaluated in order to constructa methodology for establishing a metrics-driven learning paradigm that preserves margins during adaptationby adjusting the adaptive gain. With the purpose of achieving certain phase margin requirement, the adaptivegain is re-calculated over a time-window during adaptation. Analysis on the 2nd order system with pitchattitude control of the generic transport aircraft proves that with the adjusted adaptive gain Γ the systemrobustness to uncertainty is increased signi�cantly, and the desired phase margin is achieved. Analysis andevaluation of the importance of selecting the proper time-window T is presented. Further work will be doneon elaborating on the metrics-driven learning paradigm, and also applying the method to realistic systemswith di�erent failure scenarios. References
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